博客
关于我
thunlp的OpenNRE的使用
阅读量:186 次
发布时间:2019-02-28

本文共 931 字,大约阅读时间需要 3 分钟。

OpenNRE论文详细介绍了其各个组件的实现细节。该项目旨在构建一个高效的关系抽取框架,支持基于句子、袋子和少量样本的关系抽取方法。

OpenNRE 组成结构

OpenNRE由五个核心组件构成:Tokenization、Module、Encoder、Model 和 Framework。每个组件在实现中都具备特定的功能,能够协同工作以完成关系抽取任务。

Tokenization 组件

Tokenization 的主要任务是对输入文本进行分词处理。该组件支持将文本分割为 word-level 和 subword-level 两种 token 流。开发者可以通过继承 BasicTokenizer 类来实现新的 token 化方式。

Module 组件

Module 组件主要负责模型的基本功能模块,包括网络层、池化操作和激活函数等。这些模块为后续的编码器和模型提供了基础的计算能力。

Encoder 组件

Encoder 组件的作用是将输入文本编码为语义特征向量。基于 Tokenization 和 Module 组件,作者实现了 BaseEncoder 类,能够处理单个 token 的嵌入生成。此外,作者还开发了多种常用编码器结构,如 LSTM 和 BERT,以满足不同任务的需求。

Model 组件

Model 组件包含了 OpenNRE 实现的经典关系抽取模型,例如基于 CNN 的关系抽取模型。此外,该组件还集成了多种提升模型性能的算法,如注意力机制、对抗训练和强化学习等,以增强模型的表达能力。

Framework 组件

Framework 组件作为整个 OpenNRE 系统的核心,负责集成其他四个组件,支持数据处理、模型训练、优化和评估等多项功能。该组件特别支持基于 sentence-level、bag-level 和 few-shot 的关系抽取方法。

开发示例

OpenNRE 的框架设计简洁易用,开发者可以通过配置各组件的参数来完成关系抽取任务。例如,开发者可以通过选择不同的编码器结构和模型算法,来满足特定任务的需求。

通过以上组件的协同工作,OpenNRE 提供了一种灵活且高效的关系抽取解决方案,适用于不同规模的数据集和抽取任务。

转载地址:http://mwrn.baihongyu.com/

你可能感兴趣的文章
Open Graph Protocol(开放内容协议)
查看>>
Open vSwitch实验常用命令
查看>>
Open WebUI 忘了登入密码怎么办?
查看>>
open***负载均衡高可用多种方案实战讲解02(老男孩主讲)
查看>>
Open-E DSS V7 应用系列之五 构建软件NAS
查看>>
Open-Sora代码详细解读(1):解读DiT结构
查看>>
Open-Sora代码详细解读(2):时空3D VAE
查看>>
Open-Source Service Discovery
查看>>
open-vm-tools-dkms : 依赖: open-vm-tools (>= 2:9.4.0-1280544-5ubuntu3) 但是它将不会被安装
查看>>
open3d-Dll缺失,未找到指定模块解决
查看>>
openai Midjourney代理服务 gpt大模型第三方api平台汇总 支持国内外各种大模型 持续更新中...
查看>>
OpenAll:Android打开组件新姿势【仅供用于学习了解ButterKnife框架基本原理】
查看>>
OpenASR 项目使用教程
查看>>
Openbox-桌面图标设置
查看>>
opencart出现no such file or dictionary
查看>>
OpenCV 3.1 imwrite()函数写入异常问题解决方法
查看>>
OpenCV 4.1.0版drawContours
查看>>
Opencv cv2.putText 函数详解
查看>>
opencv glob 内存溢出异常
查看>>
opencv Hog Demo
查看>>